

Tutorial: Automatic 3D modeling of indoor structures from panoramic imagery

Giovanni Pintore¹, Marco Agus² and Enrico Gobbetti¹ Visual Computing Group, CRS4, Italy¹ College of Science and Engineering, HBKU, Qatar²

SESSION1: OPENING

Speaker: Enrico Gobbetti

Automatic 3D modeling of indoor structures from panoramic imagery

Organizers and lecturers

Giovanni Pintore CRS4, Italy Marco Agus HBKU, Qatar Enrico Gobbetti CRS4, Italy

Schedule

- Before the break:
 - Opening
 - Indoor capture and modeling basics Definition and Application; Tasks and model; Data Capture; Artifacts; Reconstruction priors; Open Research Data;
 - Room modeling
 - Bounding surfaces, exploiting priors, deep learning solutions

- After the break:
 - Integrated indoor model computation
 - Multi-rooms; Ensuring consistency; Finding and modeling connections
 - Visual representation generation and exploration
 - Beyond geometric reconstruction; Appearance; panoramic exploration
 - Wrap-up, conclusions, Q&A

Supporting material

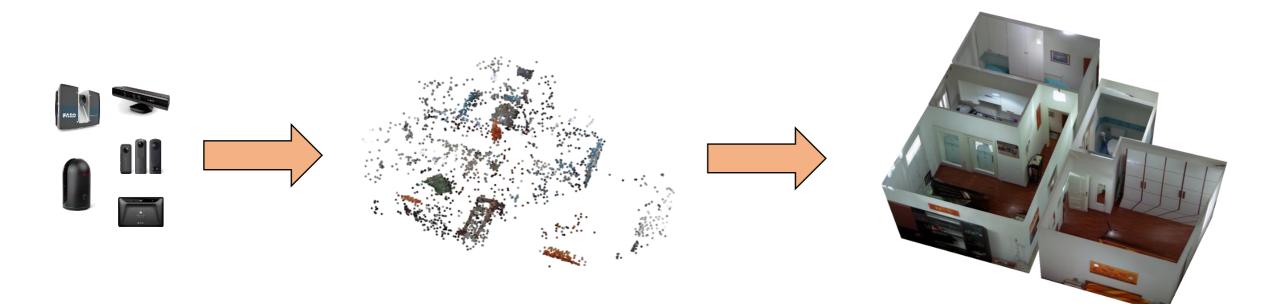
• Course web site:

- <u>http://vic.crs4.it/vic/cvpr2023-</u> <u>tutorial-pano/</u>
- Updated in coming weeks with slides and bibliography

- STAR + Tutorial notes on indoors
 - G. Pintore, C. Mura, F. Ganovelli, L. Fuentes-Perez, R. Pajarola, and E. Gobbetti. State-of-the-art in Automatic 3D Reconstruction of Structured Indoor Environments. Computer Graphics Forum, 39(2): 667-699, 2020. DOI: 10.1111/cgf.14021
 - G. Pintore, C. Mura, F. Ganovelli, L. Fuentes-Perez, R. Pajarola, and E. Gobbetti. Automatic 3D Reconstruction of Structured Indoor Environments. In SIGGRAPH 2020 Courses. Pages 10:1-10:218, August 2020. DOI: 10.1145/3388769.3407469

SESSION2: INTRODUCTION

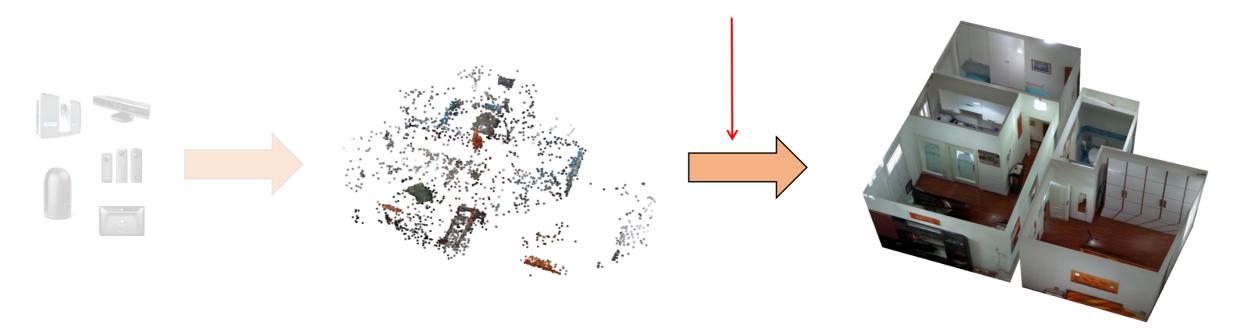
Speaker: Enrico Gobbetti

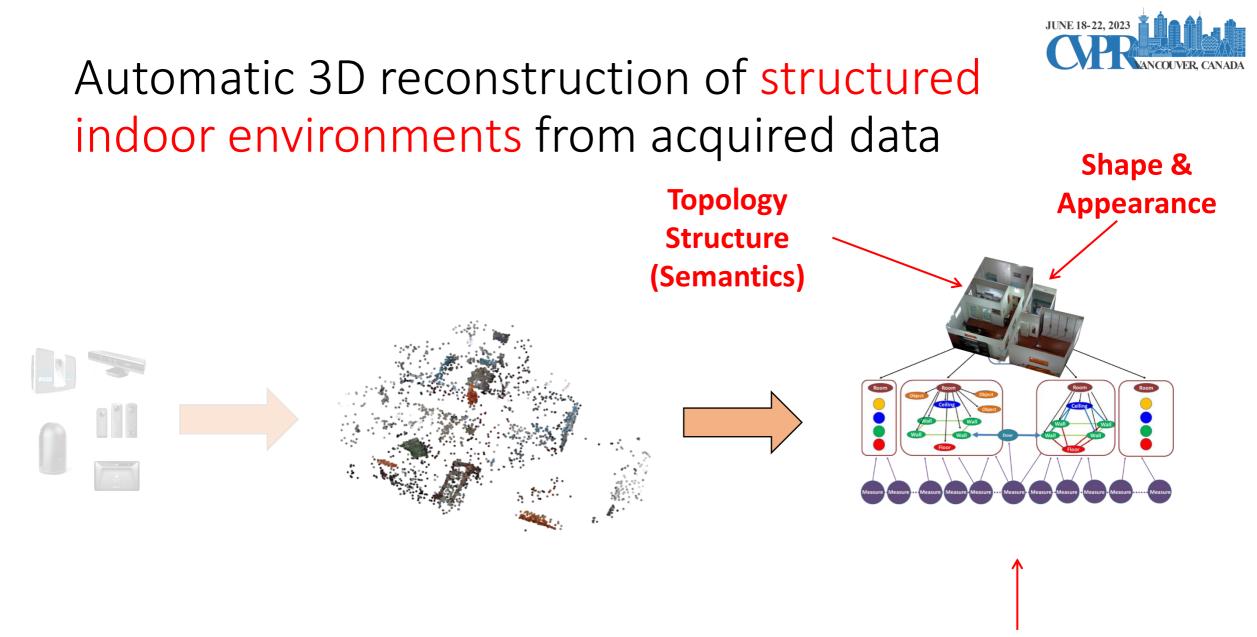

Automatic 3D modeling of indoor structures from panoramic imagery

Automatic 3D reconstruction of structured indoor environments from acquired data

3D

Automatic 3D reconstruction of structured indoor environments from acquired data


Reconstruction pipeline



Automatic 3D reconstruction of structured indoor environments from acquired data

Automatic pipelines

Link to captured data

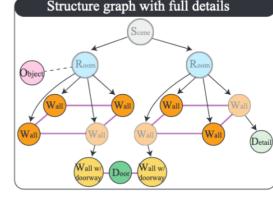
Today's focus: panoramic imaging for indoors

Why focusing on panoramic imaging?

1) MANY ACQUISITION SOLUTIONS AVAILABLE (commodity and professional devices, stitching, ...)

2) EASY AND FAST ACQUISITION (single shot takes few seconds and covers all scene around the viewer)

3) GLOBAL/WIDE CONTEXT FACILITATES ANALYSIS (no clipping of objects/areas, possibility to look at scene regularities, ...)


4) EXPLORATION OF SINGLE IMAGE IS DYNAMIC/IMMERSIVE (fundamentally different than standard 2D counterparts)

Why specialized solutions for interiors?

- Strong need for *structured indoor models*
 - High-level representation of main elements and their relations
 - Optimized to meet requirements of specific fields of application
 - Building Information Models (AEC domain): bare architectural structure
 - Emergency management, location awareness, routing: also interior clutter
 - Standard surface reconstruction does not guarantee this
- Deal with specific challenges of input data
 - Technological limitations of acquisition devices
 - Artifacts caused by properties of real-world interiors
 - Clutter, unreachable areas
 - Transparent/reflective + textureless surfaces

Ikehata et al. ICCV2015

Noise & outliers

Sampling density

Misalignment

Missing data

Sampling density

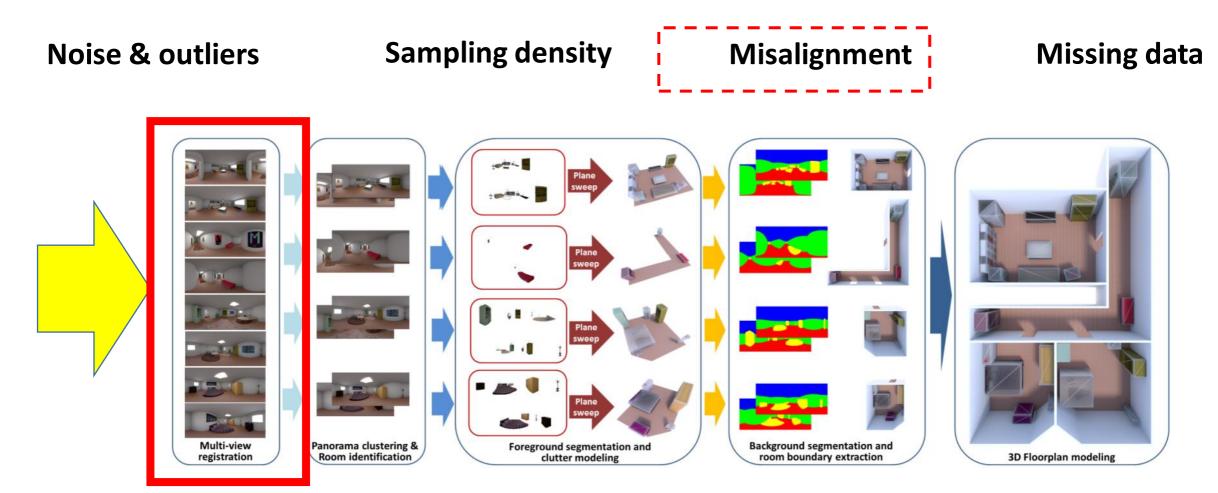
Misalignment

Missing data

Noise & outliers

Misalignment

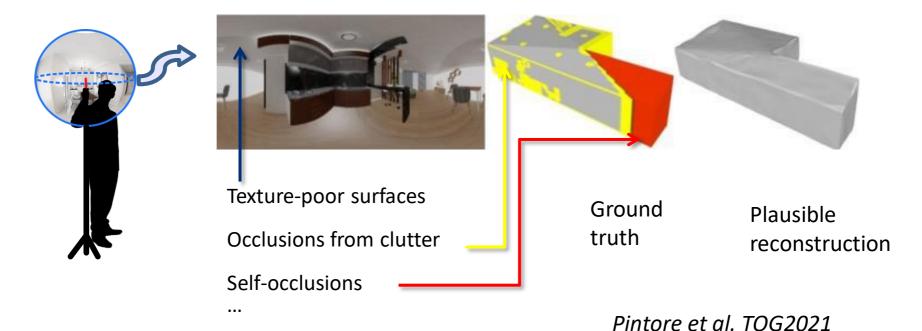
Missing data



Decreasing ray density Decreasing ray density

ضــو فـي مؤسســـة قطــ fember of Qatar Foundatio

Member of Oatar Foundatio



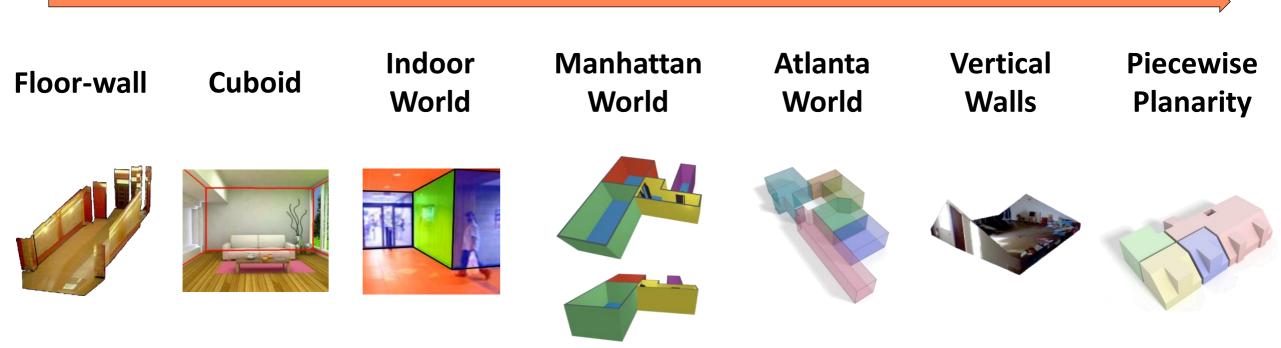
Noise & outliers

Sampling density

Misalignment

المسلم المسلم

Reconstruction of models from noisy, partial, imperfect data

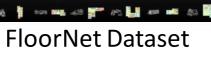

- Interpret the images / the images under the assumption that the photographed models has some known characteristics
- General surface reconstruction priors
 - Smoothness, continuity, ...
 - Flat smooth surfaces surfaces joining at sharp angles...
- Architectural priors

Architectural priors

complexity

Reconstruction of models from noisy, partial, imperfect data

- Historically, priors were exploited in **geometry-reasoning** solutions, that combined them with specific processes to extract models
 - E.g. extract edges and corners, filter according Manhattan direction, build model through connection/fusion, ...
- Nowadays, more and more solutions exploit **data driven priors**, i.e., common characteristics extracted from large sets of examples
 - Esp. deep-learning solutions
- The most common approach is a combination of both



Open research datasets

	Name	Data	Source	Coverage	Capture	Notes
SI	SUN 360 Database [Mas12]	Individual RGB	Real	Panoramic	Tripod	Whole rooms;
	SUN 3D Database [Pri13]	Registered RGB-D	Real	Perspective	Hand-held video	Whole rooms; PL; 3D models
	UZH 3D Dataset [Uni14]	Registered PC	Real/Synth	Scan	Tripod	Large-scale; multi-room; 3D models
	SunCG Dataset [Pri16]	CAD models	Synth	All	Manual modeling	Large-scale; FL
	BundleFusion Dataset [Sta16a]	Registered RGB-D	Real	Perspective	Hand-held video	Room-scale; FL; 3D models
	ETH3D Dataset [ETH17]	Registered RGB	Real	Perspective	Tripod	Scene parts; ground truth (PC+DM)
	Matterport 3D [Mat17]	Registered RGB-D	Real	Panoramic	Tripod	Large-scale; multi-room; FL
	ScanNet [DCS*17a]	Registered RGB-D	Real	Perspective	Hand-held video	Large-scale; multi-room; FL;3D models
	2D-3D-S [Sta17]	Registered RGB-D	Real	Panoramic	Tripod	Large-scale; multi-room; FL
	FloorNet Data [LWF18b]	Registered RGB-D	Real	Perspective	Hand-held video	Large-scale; FL
	CRS4/ViC Datasets [CRS18]	Registered RGB	Real	Panoramic	Tripod	Large-scale; multi-room; 3D models
	Replica Dataset [SWM*19]	CAD models	Synth	All	Manual modeling	Highly realistic; FL
	Structured3D Dataset [ZZL*19]	CAD models	Synth	All	Manual modeling	Large scale; FL
		1995年1996年1996年1996年1996年1996年1996年1996年	P & # 68 pi +	s 18 -	FRL apartment 0 FRL apartment 1	FRL spurtnent 2
CRS4/ViC Research Datasets 2D-3D-S Dataset 2D-3D-S Dataset						

Replica Dataset

Wrap-up

- Panoramic imaging, single or multiview, has important characteristics that make it very popular and important for indoor reconstruction and exploration
 - Device availability, ease of capture, completeness, dynamic/immersive
- Indoor reconstruction seeks to build application specific models based on partial/noisy/imperfect images
 - Noise & outliers, sampling density, misalignment, missing data
- Reconstruction methods exploit priors
 - Surface reconstruction priors, architectural priors, data-driven priors

Next

- Room modeling
 - Bounding surfaces, exploiting priors, deep learning solutions
- Integrated indoor model computation
 - Multi-rooms; Ensuring consistency; Finding and modeling connections
- Visual representation generation and exploration
 - Beyond geometric reconstruction; Appearance; panoramic exploration

NEXT SESSION: ROOM MODELING

Speaker: Giovanni Pintore

