

Room modeling

Introduction

- Goal: reconstruction of individual spaces
 - commonly identified with rooms
- Input: images associated with the room
 - One or few panoramic images
- Output: 3D room model or pixel-wise information
 - Single scene
 - Walls, ceilings, floor
 - Multi-modal information for specific tasks
 - Editing, VR exploration, etc.
 - Optional: multi-room integration
- Peculiarity of panoramic images
 - Effective reconstruction even from a single image

MVlayoutNet – Hu ACM MM2022

HorizonNet – Sun CVPR2019

Zhang et al. ECCV 2014

Fundamental tasks

- Pixel-wise information from a single image
 - **Depth**, semantics, normals
 - 2D 2D task (at least 3D features of the visible point cloud)
 - Visible scene, dense reconstruction
 - Also needed for model integration (see next Section)
- Underlying structure recontruction: **3D layout**
 - Geometry of the bounding permanent surfaces
 - i.e., ceiling, floor, walls
 - 2D 3D task (corners, edges, planes, meshes)
 - Dealing with occlusions, sparse approximation

Pixel-wise reconstruction

- Most common: depth reconstruction
- Naturally fits deep learning approach
 - Often supervised
- Standard solution: encoder-decoder scheme
 - Changing latest layer and activation function
 - Depth
 - Semantic
 - Normals
 - ...

Eigen et al. ICCV2015

Depth estimation from a single image

- Early perspective solution: FCRN
 - Baseline of much of the following work
 - Fully convolutional
 - Residual architecture
 - Huber loss
- Generic encoder-decoder solution
 - No indoor priors
 - No spherical assumptions
- Simply adaption leads to poor results for indoor panoramic scenes

- Distortion-aware convolutions: OmniDepth
 - FCRN baseline extended with specialized kernels
 - Targeted for equirectangular images
- Indoor priors in the loss function: panoPopups
 - Planar assumption
 - Principal curvature
 - Depth and normal map prediction

OmniDepth - Zioulis ECCV2018

Pano Popups - Eder CVPR2019

- BiFuse: fully-supervised dual branch network
 - Equirectangular branch: capturing wide context
 - Cubemap branch: aiming to minimize distortion
 - Multiple-fusion at feature-level
 - Computationally expensive

- BiFuse++: self-supervised dual branch network
 - Photo consistency from 3 adjacent panoramas
 - Improves BiFuse performance
- No specific indoor assumption adopted

Equirectangular

BiFuse++ - Wang TPAMI 2022

- Exploiting indoor features: SliceNet
 - Gravity aligned features encoded as sequences of compressed features
 - Typical of man-made structures
 - Spherical image compact representation
 - Asymmetric contractive convolutions (along vertical directions sphere vertical slices)
 - Vertical slices correspond to vertically compressed features

SliceNet - Pintore CVPR 2021

- Encoder: contractive convolution only along vertical direction
 - Return a sequence of compressed features along image width (W x s)
- Decoder: LSTM (transformer-like) + vertical decompression
 - LSTM recovering long and short term spatial relationships between slices
 - Decompression: asymmetric convolution (same of encoding) and upsampling

- Using transformer: PanoFormer
 - Improving small details recovery
 - Combining self-attention and tangent images (Eder CVPR2020)
- Neural scene representation
 - Multi-view: 3 panorama required
 - Better than common SfM
 - But not comparable on large scale datasets
 - NeRF drives self-supervised learning
 - Manhattan World weights initialization

PanoFormer - Shen ECCV2022

Chan et al. CVPR2023

Pixel-wise reconstruction: summary

- Fundamental task to create high-level models
 - Holistic and semantic understanding
 - Supporting single and multi-view reconstruction
- Open problems
 - Resolution
 - Computational scalability
 - Self-supervised methods limits
 - Less performance for single view
 - Prediction consistency for multi-view
 - Limit to an effective integration

360MonoDepth - Rey-Area CVPR2022

3D layout reconstruction

- Geometry of the bounding surfaces
 - Rooms from one or more images
 - combined to form a more complex structured model
- Common in panoramic world: room from a single image
 - Easier to capture (even by stitching with a mobile)
 - Avoid additional image-registration pipeline
 - Multi-view only to compose more complex environments
 - See next Sec.
 - A single 360 image contains enough information

Hu et al. ACM MM2022

Zou et al. IJCV2022

Layout reconstruction: indoor issues

- Differences from depth estimation
 - Occlusions from clutter
 - Self-occlusions
- Ambiguities
 - Texture-poor surfaces
 - .
- Need for indoor priors!

Layout from a single RGB image

• Early approaches (perspective)

- Fundamental priors (see prev. sessions)
- Geometric context (GC) for indoor scene
 - Cuboid (CB) prior
 - Room box and surface labels jointly estimated
 - floor, ceiling, wall, objects
- Orientation maps (OM) from MW vanishing lines
 - Indoor World Model (IWM) geometric reasoning
 - Manhattan world planes bounding the room

Hedau et al. ICCV 2009

Lee et al. CVPR 2009

Layout from a single RGB image

- Geometric context (GC) and Orientation Map (OM)
 - Basis of indoor geometric reasoning
- Geometric reasoning on the IWM
 - Horizontal floor and ceiling related by a homography
- Geometric reasoning on panorama: PanoContext
 - Panoramic image converted into perspective images
 - e.g, cubemaps
 - GC and OM applied to perspective views
 - Results re-projected on the original panorama

PanoContext - Zhang. ECCV2014

Layout from a single panorama

PanoContext

- Demonstrates advantages of panoramic vs. pinehole view
- Image preprocessing: GC+OM exploited for aligning to Manhattan World axis
 - Still adopted by many modern pipelines
 - Simplifying reconstruction
- 3D room box fitting
- Room shape from panorama
 - Improving room shape estimation
 - Exploiting panoramic image to improve reconstruction from a point cloud

PanoContext - Zhang. ECCV2014

Cabral et al. CVPR2014

Layout from a single panorama

- Fully geometric reasoning approaches
 - Low-level features derived by GC e OM
 - Super-pixels and edges
 - Spatial transforms from indoor priors
 - Super-pixels and edges projected to floorplan
- ...untill the rise of deep-learning approaches
 - Data-driven features
 - Indoor priors still hold

JUNE 18-22, 2023

Yang et al. CVPR2016

Pintore et al. WACV2016

Pintore et al. C&G 2018

Data-driven layout from panorama

- Impressive results
 - Accuracy and speed
- Typical output
 - Corners and boundaries
- Large annotated datasets needed
 - Synthetic or real
 - Often rectified images for real-world data
 - GC+OM alignment
 - Abstract models
 - User annotation
 - Assisted tools needed

LayoutNet – Zou CVPR2018

PanoAnnotator – Yang Siggraph Asia post. 2018

Data-driven layout from panorama

- Common pipeline
 - Image pre-processing
 - Reduce 2D-3D error
 - Elements prediction
 - 2D image points: corners, boundaries, floor maps
 - Final model post-processing
 - Priors-guided regularization and 3D model generation

LayoutNet – Zou CVPR2018

DulaNet – Yang CVPR2019

Method	Input			Pre-	Network Architecture				Output			Post_processing	
					Encoder		Decoder		Gaipur			rose-processing	
	RGB in Equi-	RGB in	Manhattan	process	SegNet	ResNet	Equirectangular	Ceiling	Corner	Boudary	Floor	Equirectangular	Ceiling
	rectangular View	Ceiling View	Lines Map				View	View	Position	Position	Map	View	View
LayoutNet	•		•	•	•		•		•	•		٠	
DuLa-Net	•	•		•		•	•	•			•		•
HorizonNet	•			•		•	•		•	•			•

Zou et al. IJCV2021

Data-driven layout: pre-processing

- Improve 2D-3D matching
 - Equirectangular to 3D space
 - Undistorted images
 - Warped panorama (usually by GC+OM)
 - Vanishing lines aligned with MW axis
 - LayoutNet, DulaNet, HorizonNet
 - Computational expensive!
 - E2P/A2P projections
 - Highlighting structures
 - DulaNet, AtlantaNet
 - Minimal computational cost but requires previous warping

Correspondence between angles and 3D points for Atlanta World scenes

LayoutNet: warping to MW direction

AtlantaNet: A2P transform

Data-driven layout: pre-processing

- Why alignment: indoor equirectangular case
 - Image corners and boundaries match 3D points only if image is aligned
- Basic assumption: image aligned to gravity direction
 - Less restrictive than Manhattan World alignment
 - Avoid full pre-processing
 - Commonly verified in almost all public dataset
 - Often automatically performed by capture hardware

Bifuse++ – Wang TPAMI2022

Data-driven layout: prediction

- Input
 - Aligned equirectangular image or its projections
- Encoder-decoder scheme
 - ResNet, SegNet, ...
 - Bottleneck and expansion to original resolution
- Network output/ground truth
 - LayoutNet 2018, HorizonNet 2019
 - Corners position in image space
 - Wall-ceiling and wall-floor boundaries in image space
 - DulaNet 2019, AtlantaNet 2020
 - 2D shape on the floorplan + walls height

LayoutNet: corner and boundary map

DulaNet: deep learning framework

HorizonNet: corners position and W-C W-F edges

Data-driven layout: post-processing

- 2D regularization
 - Noisy or uncomplete shapes
 - Room shape on a 2D floorplan
 - Manhattan World prior
 - Walls are regressed and clustered into horizontal and vertical lines
 - Walls are fitted from corners position and ceiling/floor boudaries
 - NB. Not data-driven! heuristic approach
- 3D extrusion
 - Layout height
 - MW/ Atlanta World model : single height
 - Vertical walls model: multiple heights

DulaNet: regression to H/V lines

HorizonNet: voting scheme

Layout prediction example: AtlantaNet

- No Manhattan World pre and post-processing
 - Atlanta World model
 - Admit non-right angles, curved walls, etc.
 - Constrains: Horizontal floor and ceiling
- Panoramic image -> two horizontal projections
 - Undistorted 2D room footprint from ceiling map
 - Height layout encoded into floor/ceiling IoU ratio

⁽a) Data encoding

(b) Layout recovery

AtlantaNet – Pintore ECCV 2020

AtlantaNet: data encoding

- Atlanta Transform A_h
 - Maps image points in 3D space as if their height was \mathbf{h}_{f}
 - Generated two tensors
 - **h**_f can assume only two values
 - **h**_e (constant): floor plane distance
 - **h**_c (unknown): ceiling plane distance
- Room height $(h_c h_e)$ is determined by h_r
 - Ratio between the ceiling and the floor shape
 - Value that matches the floor shape with the ceiling shape

 $A_h(\theta, \gamma, h_f) = \begin{cases} x = h_f / \tan \gamma * \cos \theta \\ y = h_f / \tan \gamma * \sin \theta \\ z = h_f \end{cases}$

(a) Data encoding

AtlantaNet: Network architecture

- Ceiling and floor inferred separately (joined by training)
- Direct feature fusion from floor and ceiling not possible
 - Requires previous knowledge of the scale (h_r)

AtlantaNet: training and inference

- Binary cross entropy on mask and its gradient
- Random feeding of floor and ceiling: augmentation
- Inference: ceiling contour and layout height from floor/ceiling shape ratio

AtlantaNet: example results

- Public Datasets
 - PanoContext
 - Matterport3D
 - Stanford2D3DS
 - Structured3D
 - AtlantaLayout

Generic room shape reconstruction

- Data-driven solutions: object surface reconstruction
 - e.g., Wang et al. [2018], Gkioxari et al. [2019], Smith et al. [2019]
 - Progressive deformation of a sphere according to image features

N. Wang et al., "Pixel2Mesh: 3D Mesh Model Generation via Image Guided Deformation," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3600-3613, 1 Oct. 2021, doi: 10.1109/TPAMI.2020.2984232.

Room shape as watertight mesh

- Indoor reconstruction target: modeling arbitrary shape rooms
- Deep3Dlayout: watertight 3D mesh representing room shape
 - Handling curved walls, sloped ceilings, domes

Deep3Dlayout – Pintore Siggraph Asia 2021 TOG

Deep3DLayout: network architecture

- Indoor layout as a 3D graph-encoded object
- Association of indoor panoramic features to 3D vertices
- Domain-specific loss function

Deep3DLayout:3D graph-encoded object

- Topological model
 - Closed 3D surface
 - Triangulated mesh
- 3D graph-encoded object
 - Vertices V(n,3) and features F(n,d)
 - Connectivity E(m,2)
- Layout by mesh deformation
 - Sequence of 2 GCN blocks
 - Driven by associating image feature
 - Coarse to fine approach

Deep3Dlayout: features pooling

- Gravity aligned features
 - Anisotropic contractive encoding (see SliceNet)
 - Targeted to indoors
 - Maximize gathered information
 - Minimize interpolation effects
- Spherical pooling
 - Self-attention module (MHSA)
 - Short and long range relationships
 - Cope with major occlusion problems

Deep3Dlayout: model and loss functions

- Combination of data and regularization terms
 - Plausible reconstruction
- Targeted model
 - Smooth surfaces joining at sharp edges
 - Less restrictive than common indoor priors
 - MWM, IWM, AWM
 - Allows other common structures
 - curved walls, vaults, domes

 $\mathcal{L}_{data} = \lambda_c \mathcal{L}_{pos} + \lambda_n \mathcal{L}_{norm} + \lambda_{sh} \mathcal{L}_{sharp}$

 $\mathcal{L}_{reg} = \lambda_e \mathcal{L}_{edge} + \lambda_s \mathcal{L}_{smooth}$

Deep3Dlayout: model and loss functions

Data terms

- Positional and orientation loss
- Sharpness loss

$$\begin{split} \mathcal{L}_{pos} &= |P|^{-1} \sum_{p \in P} \|p - N(Q, p)\|^2 + |Q|^{-1} \sum_{q \in Q} \|q - N(P, q)\|^2 \\ \mathcal{L}_{norm} &= -|P|^{-1} \sum_{p \in P} \left| n_p \cdot n_{N(Q, p)} \right|^2 - |Q|^{-1} \sum_{q \in Q} \left| n_q \cdot n_{N(P, q)} \right|^2 \\ \mathcal{L}_{sharp} &= |S_e|^{-1} \sum_{q \in S_e} \|q - N(P, q)\|^2 \end{split}$$

Deep3Dlayout: model and loss functions

- Data terms
 - Positional and orientation loss
 - Sharp loss
- Regularization terms
 - Edge loss
 - Smooth loss

Difference in using or not the feature-preserving smoothness loss (FPSL)

$$\begin{split} \mathcal{L}_{pos} &= |P|^{-1} \sum_{p \in P} \|p - N(Q, p)\|^2 + |Q|^{-1} \sum_{q \in Q} \|q - N(P, q)\|^2 \\ \mathcal{L}_{norm} &= -|P|^{-1} \sum_{p \in P} \left| n_p \cdot n_{N(Q, p)} \right|^2 - |Q|^{-1} \sum_{q \in Q} \left| n_q \cdot n_{N(P, q)} \right|^2 \\ \mathcal{L}_{sharp} &= |S_e|^{-1} \sum_{q \in S_e} \|q - N(P, q)\|^2 \end{split}$$

$$\begin{aligned} \mathcal{L}_{edge} &= |E|^{-1} \sum_{(i,j) \in E} \left\| v_i - v_j \right\|^2 \\ \mathcal{L}_{smooth} &= |V|^{-1} \sum_{i \in V} e^{-|K_{H_i}|} \left| K_{H_i} \right| \end{aligned}$$

Deep3Dlayout: example results

اممة

UNIVERSIT

Room shape as watertight mesh: limitations

- Promising solution but important limitations
 - Indoor structure often are not closed, watertight mesh
 - Output is not really structured
 - GCN are not stable, transfer-learning limits

Empty room structure

Watertight mesh approximation

Structured layout: latest trends

- Geometry-aware transformers
 - Vertical compression (as SliceNet, HoHoNet, Deep3DLayout)
 - Custom transformer improving LSTM or MHSA
 - Encoding local and global window blocks
 - Horizon depth and planar-aware losses (as LED2-Net)
- Disentangling Orthogonal Planes
 - Multi-scale features disentangled as horizontal and vertical MW planes before compression and gated fusion
 - Cross-scale Distortion Awareness (PanoFormer)
- MW pre post processing still adopted (same of HorizonNet)

LGT-Net Jiang CVPR2022

DOPNet Jiang CVPR2023

Room layout reconstruction: summary

- Geometry of the bounding permanent surfaces
 - 2D 3D task (corners, edges, planes, meshes)
 - Common in panoramic world: room from a single 360 image
 - Rooms concept can be extended to larger and complex structures (next)
- Open problems
 - Occlusions: from clutter and from structure itself
 - Manhattan regularization and completion still common
 - Output model: truly representative of the structures and usable (e.g., CAD-like)
 - Corners and continous edges: very limiting
 - Closed meshes: difficult to structure (walls, floor, ceiling)

HoHoNet - Sun CVPR2021

Next session

Integrated indoor model

