

SESSION6: CLOSING

Speaker: Enrico Gobbetti

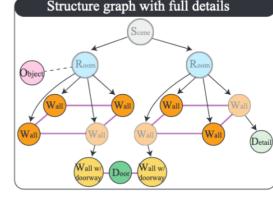
Today's focus: panoramic imaging for indoors

Why focusing on panoramic imaging?

1) MANY ACQUISITION SOLUTIONS AVAILABLE (commodity and professional devices, stitching, ...)

2) EASY AND FAST ACQUISITION (single shot takes few seconds and covers all scene around the viewer)

3) GLOBAL/WIDE CONTEXT FACILITATES ANALYSIS (no clipping of objects/areas, possibility to look at scene regularities, ...)


4) EXPLORATION OF SINGLE IMAGE IS DYNAMIC/IMMERSIVE (fundamentally different than standard 2D counterparts)

Why specialized solutions for interiors?

- Strong need for *structured indoor models*
 - High-level representation of main elements and their relations
 - Optimized to meet requirements of specific fields of application
 - Building Information Models (AEC domain): bare architectural structure
 - Emergency management, location awareness, routing: also interior clutter
 - Standard surface reconstruction does not guarantee this
- Deal with specific challenges of input data
 - Technological limitations of acquisition devices
 - Artifacts caused by properties of real-world interiors
 - Clutter, unreachable areas
 - Transparent/reflective + textureless surfaces

Ikehata et al. ICCV2015

Reconstruction of models from noisy, partial, imperfect data

- All methods use some **architectural priors** in addition to other surface reconstruction ones
- Historically, priors were exploited in **geometry-reasoning** solutions, that combined them with specific processes to extract models
 - E.g. extract edges and corners, filter according Manhattan direction, build model through connection/fusion, ...
- Nowadays, more and more solutions exploit **data driven priors**, i.e., common characteristics extracted from large sets of examples
 - Esp. deep-learning solutions
- The most common approach is a combination of both

Major directions

- Room modeling
 - Bounding surfaces, exploiting priors, deep learning solutions
- Integrated indoor model computation
 - Multi-rooms; Ensuring consistency; Finding and modeling connections
- Visual representation generation and exploration
 - Beyond geometric reconstruction; Appearance; panoramic exploration

Supporting material

• Course web site:

- <u>http://vic.crs4.it/vic/cvpr2023-</u> <u>tutorial-pano/</u>
- Updated in coming weeks with slides and bibliography

- STAR + Tutorial notes on indoors
 - G. Pintore, C. Mura, F. Ganovelli, L. Fuentes-Perez, R. Pajarola, and E. Gobbetti. State-of-the-art in Automatic 3D Reconstruction of Structured Indoor Environments. Computer Graphics Forum, 39(2): 667-699, 2020. DOI: 10.1111/cgf.14021
 - G. Pintore, C. Mura, F. Ganovelli, L. Fuentes-Perez, R. Pajarola, and E. Gobbetti. Automatic 3D Reconstruction of Structured Indoor Environments. In SIGGRAPH 2020 Courses. Pages 10:1-10:218, August 2020. DOI: 10.1145/3388769.3407469

SESSION7: Q&A

