
Mobile Graphics Tutorial – EuroGraphics 2017

Visual Computing Group

Part 3

Graphics development for mobile

systems

1

Mobile Graphics Tutorial – EuroGraphics 2017

Mobile Graphics

OS

architecture

programming

languages

3D APIs

IDEs

Heterogeneity

2

Mobile Graphics Tutorial – EuroGraphics 2017

Mobile Graphics

OS
programming

languages

3D APIs

IDEs

Heterogeneity

3

Mobile Graphics Tutorial – EuroGraphics 2017

Mobile Graphics

• OS

• Programming Languages

• Architectures

• 3D APIs

• Cross-development

– X86 (x86_64): Intel / AMD
– ARM (32/64bit): ARM + (Qualcomm, Samsung, Apple, NVIDIA,…)
– MIPS (32/64 bit): Ingenics, Imagination.

– Android
– iOS
– Windows Phone
– Firefox OS, Ubuntu Phone, Tizen…

– C++
– Obj-C / Swift
– Java
– C# / Silverlight
– Html5/JS/CSS

– OpenGL / GL ES
– D3D / ANGLE
– Metal / Mantle / Vulkan (GL Next)

– Qt
– Marmalade / Xamarin /
– Muio
– Monogame / Shiva3D / Unity / UDK4 / Cocos2d-x

4

Mobile Graphics Tutorial – EuroGraphics 2017

Operating Systems

5

Mobile Graphics Tutorial – EuroGraphics 2017

Operating Systems

• Linux based (Qt…)

– Ubuntu, Tizen, BBOS…

• Web based (Cloud OS)

– ChromeOS, FirefoxOS, WebOS

• Windows Phone

• iOS (~unix + COCOA)

• Android (JAVA VM)

6

Mobile Graphics Tutorial – EuroGraphics 2017

7

Development trends

•Hard to follow the trends

– software does not follow hardware evolution

– strong market oriented field where finance has strong

impact on evolution

•In general, for

– Mobile phones

•Market drive towards Android, iOS

– Tablets

•Android, iOS, Windows 10

– Embedded devices

•Heterogenous (beyond the scopes of this course)

•Here we focus on mobile phones and tablets

Mobile Graphics Tutorial – EuroGraphics 2017

Operating Systems

• Windows 10

– Windows development – Visual Studio 2017

• Good debugging / compiler / integration

– Great integration and deployment

• Universal Windows Platform (UWP)

– API access

• C#, VB.NET, and C++

– 3D API

• D3D

• OpenGL access through ANGLE

– Advantages

• Visual Studio, interoperability with iOS

• HW is quite selected/homogeneous

– Disadvantages

• ~OpenGL wrapper just recently!

8

Mobile Graphics Tutorial – EuroGraphics 2017

Operating Systems

• iOS

– Development under MacOS

• Xcode – good IDE/debug

• Clang compiler!

– API access

• Objective-C, swift

– Library programming

• C++ support

– Advantages:

• Homogeneous hardware (biggest issues are resolution related)

• State-of-the-art CPU/GPU (PowerVR SGX 54X/554, G6400)

• Good dev tools (Xcode + Clang)

– Inconvenients:

• Closed platform

• Requires iDevice for development/shipment (mostly)

9

Mobile Graphics Tutorial – EuroGraphics 2017

Operating Systems

• Android

– Development in Eclipse / AndroidStudio

• Java-based – integrated debugging (non-trivial for NDK)

• GCC / clang compilers

– Advantages

• Wide variety of hardware configurations (CPU/GPU)

• Java based + C++ as dynamic library (JNI or NDK+NativeActivity)

• Open source

• Toolchain provided for Windows/Linux/MacOS (GCC + Clang)

• Faster access to new hardware / functionality!

– Inconvenients

• Heterogeneous device base (hard to target all configurations)

• Not so integrated IDE -- ~mixed pieces

10

Mobile Graphics Tutorial – EuroGraphics 2017

Operating Systems (comparison)

• App development -- publishing

– WinPhone & iOS requires less effort for distribution

• Easy to reach the whole user base

– Android has a wide variety of configuration that require

tuning

• User base is typically reached in an incremental way

(supporting more configs)

• Many HW configurations (CPU/GPU) give more

options to explore ☺

– Windows has not yet the same market share

• Variety of configurations

11

Mobile Graphics Tutorial – EuroGraphics 2017

Programming Languages

http://www.tops-int.com/blog/which-programming-languages-are-used-for-web-desktop-and-mobile-apps/

12

Mobile Graphics Tutorial – EuroGraphics 2017

Programming Languages

• C/C++

– Classic, performance, codebase, control

• Objective C

– Bit different style (message based), well-documented API for iOS, mainly

COCOA/iOS

• Java

– Android is VM/JIT based, ~portability (API), well-known, extended, codebase

• C#

– VM based, ~Java evolution, (Win, Android, iOS)

• Swift

– Apple new language, simplicity, performance, easy, LLVM-based compilers

• HTML5/JS

– Web technologies, extended, compatibility

• Perl, Python, Ruby, D, GO (Google), Hack (facebook), …

– More options, not so popular ?

13

Mobile Graphics Tutorial – EuroGraphics 2017

3D APIs

14

Mobile Graphics Tutorial – EuroGraphics 2017

3D APIs

Mantle Direct3D Metal

OpenGL Next

 5.0

15

Mobile Graphics Tutorial – EuroGraphics 2017

• Direct 3D

– 3D API from MS for Win OS (XBOX)

– ANGLE library provides GL support on top of D3D

• Mantle

– AMD 3D API with Low-level access → D3D12 | GL_NG

• Metal

– Apple 3D API with low-level access

• OpenGL Desktop/ES/WebGL

– GL for embedded systems, now in version 3.2

• GLES3.2 ~ GL4.5

• GL Next Generation → Vulkan
–redesign to unify OpenGL and OpenGL ES into one common

API (no backward compatibility)

3D APIs

16

Mobile Graphics Tutorial – EuroGraphics 2017

3D APIs

• Direct 3D

– Games on Windows (mostly) / XBOX

– Define 3D functionality state-of-the-art

• OpenGL typically following

• 3D graphic cards highly collaborative

• Multithread programming

– Proprietary – closed source – M$

– Tested & stable – good support + tools

• Metal

– Apple 3D API with low-level access

– Much in the way of Mantle?

• buffer & image, command buffers, sync…

– Lean & mean → simple + ~flexible

Win &

Game research

Mac/iOS future ?

17

Mobile Graphics Tutorial – EuroGraphics 2017

3D APIs

• Mantle

– AMD effort – low level – direct access – 3D API

– Direct control of memory (CPU/GPU) – multithreading done well

• User-required synchronization

– API calls per frame <3k → 100K

– Resources: buffer & image ☺

– Simplified driver → maintenance (vendors)

• High level API/Framework/Engines will be developed ☺

– Pipeline state

• shaders + targets (depth/color…) + resources + geometry

– Command queues + synchronization

• Compute / Draw / DMA(mem. Copy)

– Bindless – shaders can refer to state resources

– OpenGL NEXT seems to move into ‘Mantle direction’

– Direct 3D 12 already pursuing low-level access

18

Mobile Graphics Tutorial – EuroGraphics 2017

3D APIs

• OpenGL (Desktop/ES/WebGL)

– Open / research / cross-platform

– Lagging in front of D3D → Legacy support ☹

• No more FIXED PIPELINE (1992)!! -- scientific visualization…

– GLSL (2003)…GL 3.1(2009) → deprecation/no fixed pipeline

• Compatibility profile → legacy again…(till GL 4)

• Core profile

– GLSL → shader required

– VAO

» group of VBO

» we need a base VAO for using VBO!

– Simplifying → VBO + GLSL only!

19

Mobile Graphics Tutorial – EuroGraphics 2017

3D APIs

– OpenGL ES 1.1

• Fixed pipeline – no glBegin/End – no GL_POLYGON -- VBO

– OpenGL ES 2 (OpenGL 1.5 + GLSL) ~ GL4.1

• No fixed pipeline (shaders mandatory), ETC1 texture compress..

– OpenGL ES 3 ~ GL4.3

• Occlusion queries + geometry instancing

• 32bit integer/float in GLSL

• Core 3D textures, depth textures, ETC2/EAC, many formats…

• Uniform Buffer Objects (packed shader parameters)

– OpenGL ES 3.2 ~ GL4.5

• Compute shaders (atomics, load/store)

• Separate shader objects (reuse)

• Indirect draw (shader culling…)

• NO geometry/tessellation

20

Mobile Graphics Tutorial – EuroGraphics 2017

3D APIs

• Vulkan

– derived from and built upon components of AMD's Mantle API

– with respect to OpenGL

• lower level API

•more balanced CPU/GPU usage

• parallel tasking

• work distribution across multiple CPU cores

21

OpenGL Vulkan

Global state machine No global state

State tied to context Comman buffer instead of state

Sequential operations Multithreaded programming

Limited control of GPU memory and sync Explicit control of memory man. and sync

Extensive error checking No error checking at runtime

Mobile Graphics Tutorial – EuroGraphics 2017

3D APIs

• GPGPU

– OpenCL

• On Android it is not much loved

– Use GPU vendor SDK provided libs ☺

• On iOS is only accepted for system apps

– Use old-school GPGPU (fragment shader -> FrameBuffer)

– Compute shaders

• GLES 3.2!!! General solution!!

– DirectCompute on D3D

22

Mobile Graphics Tutorial – EuroGraphics 2017

Cross-development

http://www.appian.com/blog/enterprise-mobility-2/are-mobile-platform-choices-limiting-enterprise-process-innovation

23

Mobile Graphics Tutorial – EuroGraphics 2017

Easy solutions...

• Code-less development

– Scirra Construct2

• “Photoshop for games”

• HTML-5 games editor

– Yoyo GameMaker Studio 2

• Drag’n Drop environment

24

Mobile Graphics Tutorial – EuroGraphics 2017

Cross platform

• Unity Mobile (for gaming and VR)

– iOS/Android, integration with Tango

• Unreal Engine 4 (for gaming and VR)

– iOS/Android

– former Unreal Development Kit

– free usage, payment only for shipping

• Corona SDK

– iOS /Android

– uses integrated Lua layered on top of C++/OpenGL to build graphic

application

– audio and graphics, cryptography, networking, device information and

user input

25

Mobile Graphics Tutorial – EuroGraphics 2017

Cross platform

• Marmalade

– iOS/Android/Windows

– two main layers

• low level C API for memory management, file access, timers, networking,

input methods (e.g. accelerometer, keyboard, touch screen) and sound

and video output.

•C++ API for higher level functionality for 2D (e.g. bitmap handling, fonts)

3D graphics rendering (e.g. 3D mesh rendering, boned animation),

resource management system and HTTP networking.

– Very successful but dismissing by March 2017

• EdgeLib

– iOS/Android/Windows

– high performance graphics engine in C++

– support for 2D graphics, 3D graphics (OpenGL ES), input and sound

26

Mobile Graphics Tutorial – EuroGraphics 2017

Cross platform

• JMonkey Engine

– Android

– written in Java and using shader technology extensively

– uses LWJGL as its default renderer (another renderer based on JOGL is

available, supporting OpenGL 4)

•PowerVR

– iOS/Android/Windows

– a cross-platform OS and API abstraction layer, a library of helper tools

for maths and resource loading

– optimized for PowerVR GPUs, with Vulkan support

• ARM Developer Center

– Plenty of tools (computer vision and machine learning, OpenGL ES emulator,

texture compression)

27

Mobile Graphics Tutorial – EuroGraphics 2017

Cross-development

• C++ use case: QtCreator

– Qt (~supports android, iOS, windows phone, linux, windows, mac)

– Provides API abstraction for UI, in-app purchases, ~touch input

– HOWTO (i.e. android):

• Android SDK

• Android NDK (native C++ support, toolchain, libraries, GL, CL…)

• Point environment variables ANDROID_SDK, ANDROID_NDK to folders

• Create new android project

• Play!

– Notes:

• Go for Qt > 5.4 (touch events were tricky in previous versions)

• Use QOpenGLWidget instead of QGLWidget

• Enable touch events on each widget:

– QWidget::setAttribute(Qt::WA_AcceptTouchEvents);

28

Mobile Graphics Tutorial – EuroGraphics 2017

Mobile Graphics – Development

• Conclusions

– 1) Native + platform UI …

• C++ [any language] → LLVM compiler → target platform

• Platform Framework front-end → 1 for each platform

• Performance + flexibility

• Call native code from platform code (JNI, Object C, …)

– 2) Native through framework …

• Qt | Marmalade …

• C++ code uses framework API

– Framework API abstracts platform API [N platforms]

– BUT less flexible integration ?

– 3) Go web → HTML5/JS …

• JS code + WebGL

• ~Free portability (chrome / firefox / IE … ?)

• BUT performance is 0.5X at most with asm.js

29

Mobile Graphics Tutorial – EuroGraphics 2017

MOBILE METRIC CAPTURE AND
RECONSTRUCTION

Next Session

30

