

Part 4

Mobile metric capture and reconstruction

Computer vision and mobile applications

CR54

Computer vision and mobile applications

Mostly 2D

. . .

CR54

- Image enhancement
- Image stitching
- Image matching
- Object detection
- Texture classification

Activity recognition

Mostly 3D

. . .

- Camera localization
- Pose estimation
- 3D shape recovery
- 3D scene reconstruction
- Material/appearance recovery
- Augmented reality

Applications made possible by specific features of mobile devices!

Features

- 1. Mobility
- 2. Camera
- 3. Active light
- 4. Non-visual sensors
- 5. Processing power

- 6. Connectivity
- 7. Display

Features (1/7): Mobility

- Consumer
 - Smartphones
 - Tablets
- Embedded
 - Autonomous driving
 - Assistive technologies

Specific

- Drones
- Robots

Features (1/7): Mobility

- Consumer
 - Smartphones
 - Tablets

- Ember On-site applications / Personal
 Auto applications / Motion and/or location
 Assi taken into account / Embedded solutions

- **Specific**
 - Drones
 - Robots

Features (2/7): High-res/flexible camera

Common features

- High resolution and good color range (>12 MP, HDR)
- Small sensors (similar to point and shoot cameras – approx. 1/3")
- High video resolution and frame rate (4K at 30fps)

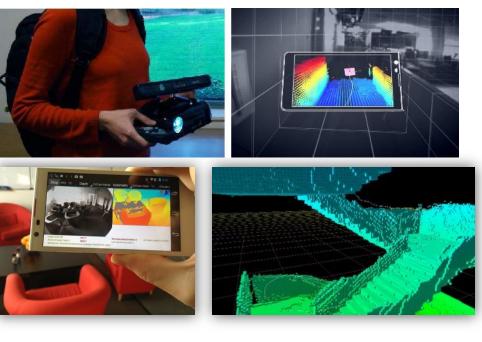
Wide variety of field of views

- standard, fisheye, spherical
- Specialized embedded cameras...
 - Better lenses and sensors...

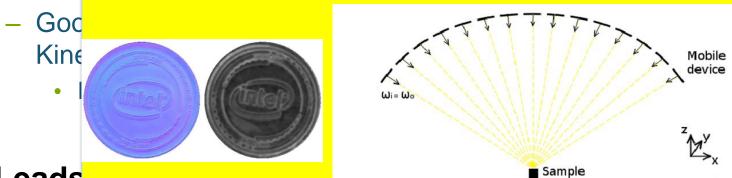
Features (2/7): High-res/flexible camera

Common features

- High resolution and good color range (>12 MP, HDR)
- Small sensors (similar to point and shoot cameras – approx 1/3")



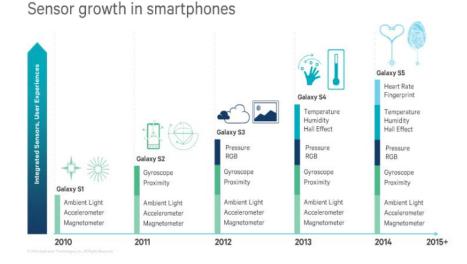
- High Visual channel is the primary one
- (4K Computational photography Wide Apps analyze/use snapshots or videos
 - standard, fisheye, spherical
- Specialized embedded cameras...
 - Better lenses and sensors...

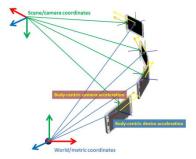

Features (3/7): Active lighting

- All smartphones have a flashlight
 - LED source at fixed distance from camera
- Custom devices have integrated emitters
 - Google TANGO / Microsoft Kinect
 - Integrated depth sensor
- Leads to specialized capture procedures

Features (3/7): Active lighting

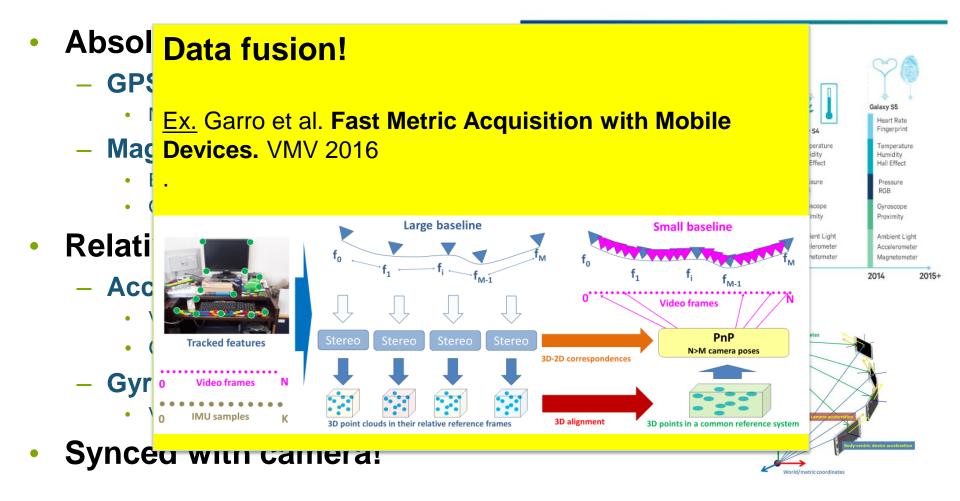
- All sr Specialized capture procedures flashli exploiting synchronization of illumination
 - LEC and visual sensing from
- Custo <u>Ex.</u> Riviere et al. Mobile surface reflectometry. Computer integr Graphics Forum. 2015.

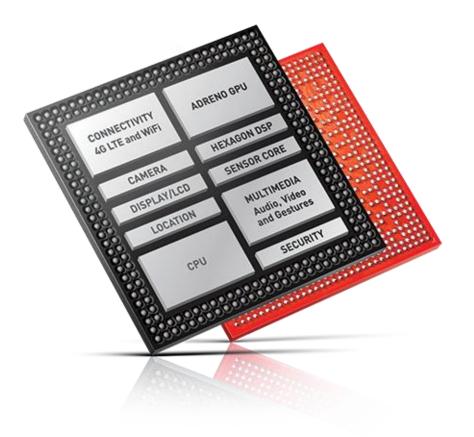



 Leads capture procedures

Features (4/7): Non-visual sensors

Absolute reference


- GPS / A-GPS
 - Mainly for outdoor applications
- Magnetometer
 - Enable compass implementation
 - Often inaccurate for indoor
- Relative reference
 - Accelerometer
 - Variable accuracy (sensitive to temperature)
 - Good metric information for small scale scene
 - Gyroscope
 - Very good accuracy for device relative orientation
- Synced with camera!


Features (4/7): Non-visual sensors

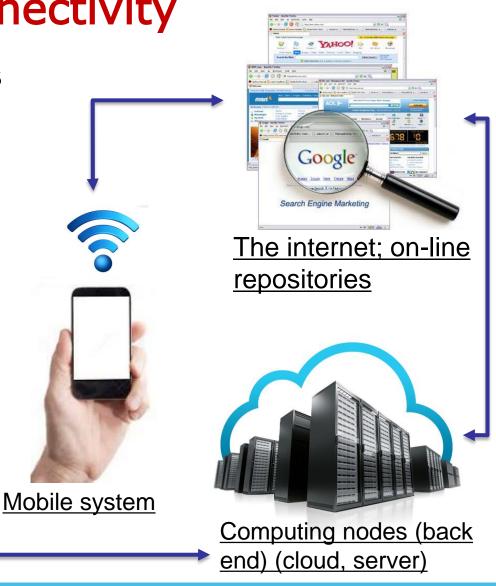
CR54

Features (5/7): Processing power

- Growing performance of mobile CPU+GPU
 - (see previous sections)
- Capable to execture computer vision pipeline on mobile device
 - i.e. OpenCV for Android
- Some limitations due to power consumption

Features (5/7): Processing power

- Growi On-board pre-processing or even full mobil processing
 - (see
- Capak Ex. Tanskanen et al. Live Metric 3D Reconstruction on Mobile Phones. ICCV2013 on mc
 - i.e.
- Some power

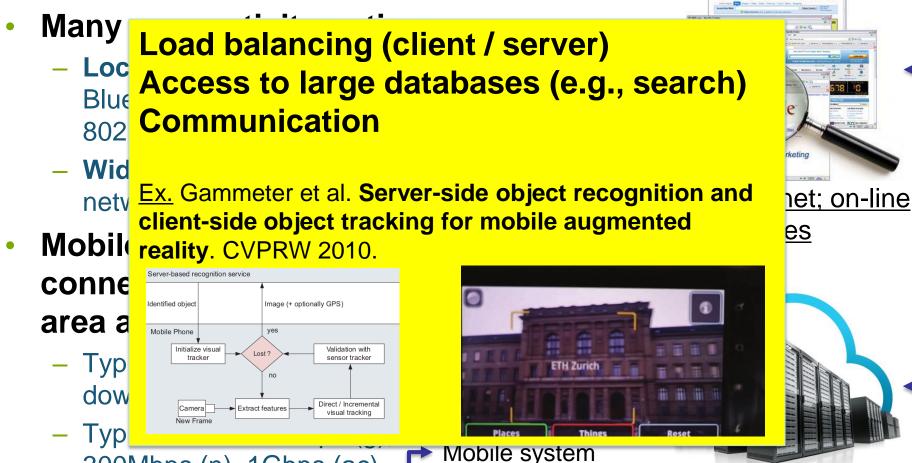


Features (6/7): Connectivity

Many connectivity options

- Local area: NFC, Bluetooth, Bluetooth Low Energy, Wi-Fi 802.11x
- Wide area: Cellular wireless networks: 3G/4G/5G
- Mobile devices can connect at local or wide area at reasonable speed
 - Typical LTE/4G: 18 Mbps down, 9.0 Mbps up
 - Typical Wi-Fi: 54Mbps (g),
 300Mbps (n), 1Gbps (ac).

Lo-cost -> No-Costs



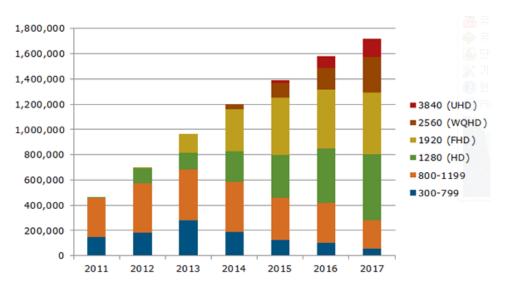
· YAHOO!

Computing nodes (back

end) (cloud, server)

Features (6/7): Connectivity

300Mbps (n), 1Gbps (ac).


Lo-cost -> No-Costs

Features (7/7): Display!

- Hi-res/hi-density display
 - Data presentation!
- Co-located with camera + other sensors
 - Tracking during capture!
- Touch screen

25

- Co-located user-interface
- (UI also may exploits other sensors)

Features (7/7): Display!

Hi-res Data/result presentation

- Data Guided capture / Augmentation
- Co-loc

Other Ex. Pintore et al. Mobile Mapping and Visualization of Indoor Structures to Simplify Scene Understanding and

- Trac Location Awareness. ECCV ACVR 2016

Touch

– Co-l – (UI :

sen

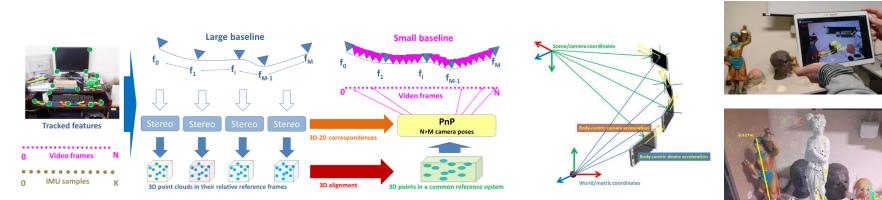
Wrap-up: mobile apps characterized by the exploitation of mobile device features

Features

- 1. Mobility
- 2. Camera
- 3. Active light
- 4. Non-visual sensors
- 5. Processing power

- 6. Connectivity
- 7. Display

Example 1 DATA FUSION FOR METRIC CAPTURE

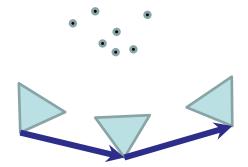

Metric acquisition with a commodity mobile phone

Goal

CR54

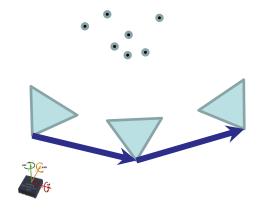
- Capture 3D models with real-world measures
- Data fusion approach

 Exploit synchronization of visual sensor & IMU to capture scenes in real-world units


Garro et al. Fast Metric Acquisition with Mobile Devices. VMV 2016

Structure-from-Motion + Dense reconstruction

- SfM reconstructs a point cloud from a series of images
 - 3D positions of (sparse) matched features
 - Camera positions and orientations
- Many approaches for densification
 - Pipeline showed to work at interactive rates on phones (Taskanen et al 2013)
- SCALE AMBIGUITY


Data fusion: Visual + IMU

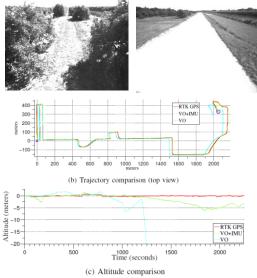
- Use sensors synced with visual channel
 - GPS+Magnetometer generally not applicable
 - IMU returns <u>orientation</u> and <u>acceleration</u> in real world units

Idea

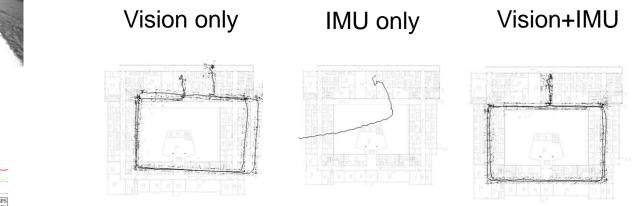
- track camera movement with IMU during visual capture
- use IMU data to find out the realworld distance between SfM camera positions, resolving the scale ambiguity

Data fusion: Visual + IMU

CR54


- The accelerometer returns acceleration
- Therefore, we should be able to compute the displacement between two camera positions as

$$x(T1,T2) = \left\| \int_{T1}^{T2} \left(v(T1) + \int_{T1}^{t'} a(t) \, dt \right) dt' \right\|$$


 Not so easy: onboard IMU sensors are biased and noisy and SfM camera positions are sparse

Data fusion approaches (1/5)

 Match position from IMU integration with position from SfM, coping with noise/bias by extensive filtering

A new approach to vision-aided inertial navigation [Tardif et al 2010]

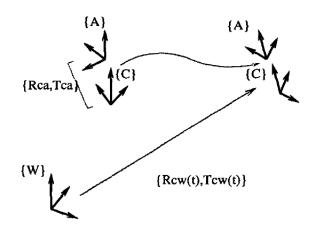
Visual-Inertial Navigation, Mapping and Localization: A Scalable Real-Time Causal Approach [Jones, Soatto 2011]

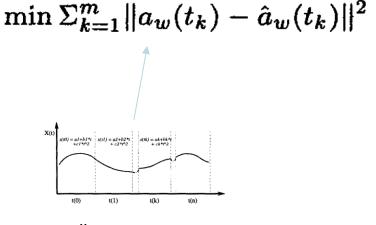
Requires LONG acquisition times and LONG offline processing times

Data fusion approaches (2/5)

- Ad-hoc online solutions taking into account IMU characteristics
 - Segment motion in "swift movements" with large accelerations
 - Integration of IMU acceleration to derive position matched with SfM
 - Continuous process of outlier rejection and re-estimation of scale

Live metric 3D reconstruction on Mobile Phones [Tanskane et al. 2013]


$$\underset{\lambda}{\operatorname{arg\,min}} = \sum_{i \in I} \|\vec{x}_i - \lambda \vec{y}_i\|^2$$

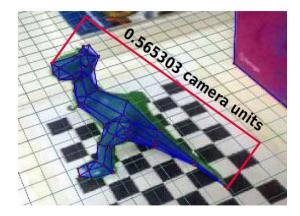

One estimate of λ at the end of each swift movement Estimation of scale λ only on inlier set *I*

 Working but motion-dependent and prone to accumulation error due to integration

Data fusion approaches (3/5)

 Match accelerations from IMU with accelerations from SfM

spline parameters


Camera trajectory estimation using inertial measurements and Structure from Motion results [JungTaylor2001]

Works off-line and assumes high-accuracy (robotics) IMU

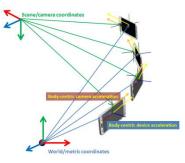
Data fusion approaches (4/5)

- Match accelerations from IMU with accelerations from SfM at SfM frame-rate (large baseline!)
 - Downsample and anti-alias IMU samples at SfM frame rate
 - Optimize scale and bias

Hand-waving away scale [Ham et al. 2014]

CR54

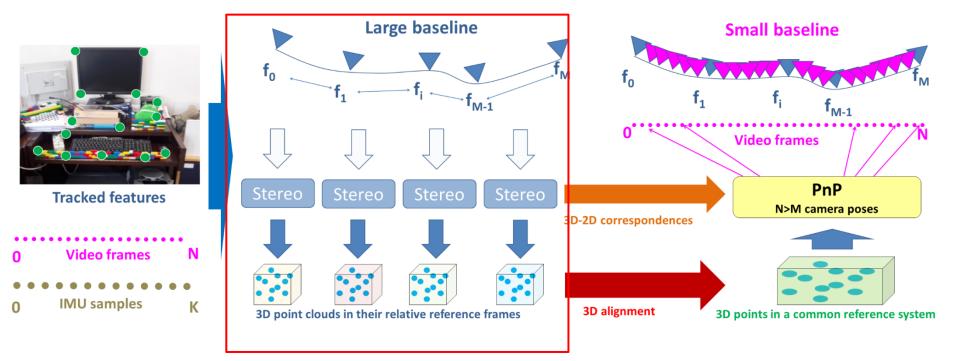
$$\operatorname*{arg\,min}_{s,\mathbf{b}} \eta\{s \cdot \hat{\mathbf{A}}_V + \mathbf{1} \otimes \mathbf{b}^{\mathsf{T}} - \mathbf{D}\mathbf{A}_I\mathbf{R}_I\}$$


D: convolutional matrix for antialising and downsampling IMU signal

 Requires very long acquisition times due to downsampling at SfM rate

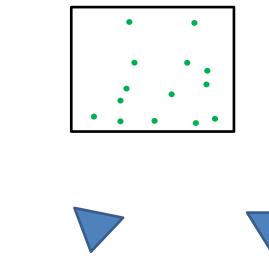
Data fusion approaches (5/5)

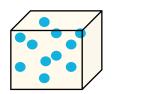
- Match accelerations from IMU with accelerations from SfM at IMU frame-rate (small baseline!)
 - Upsample SfM samples at high rate using all available visual data
 - Estimate acceleration from upsampled transforms and match them to IMU samples using robust fitting

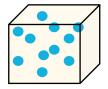

Fast Metric Acquisition with Mobile Devices. [Garro et al. 2016]

$$\underset{s,R}{\operatorname{argmin}\{\|A_{c} - sRA_{s}\|\}}$$

Fast, coping with large errors and noise

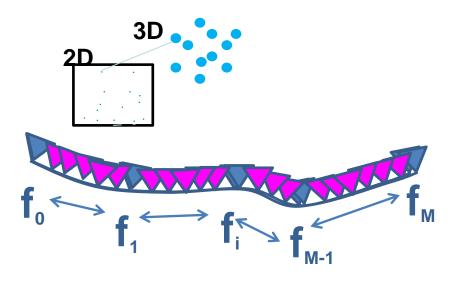

Vision Module Pipeline



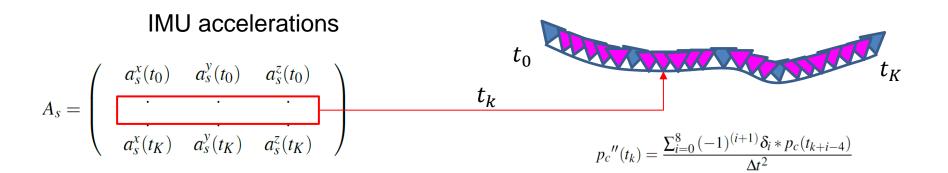

Vision Module

- Traces Shi-Thomasi features
- When baseline is large enough
 - Estimate Essential Matrix, that is, relative camera pose between f0 and fi
 - Calculate a 3D point for each feature point
- Note: each pair of cameras has its own reference system

f_o


Vision Module

Global registration


- M point clouds
- A subset of features is present in each point cloud
- Use feature correspondence to align all the point cloud in the same reference system

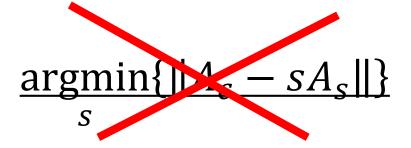
Cameras upsampling

- Features are tracked for all frames
- Use aligned point cloud and tracking position to estimate cameras for all frames with Perspective-n-Point (**PnP**)

Recovering the scale factor (1/2)

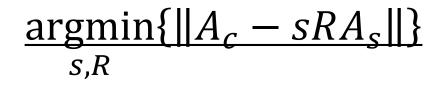
Camera accelerations

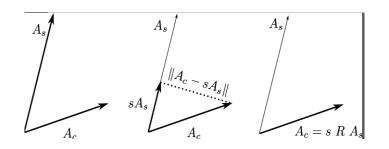
$$A_{c} = \begin{pmatrix} p_{c}''(t_{0})^{T} R_{c}(t_{0}) & \\ & \ddots & \\ & & \ddots & \\ & p_{c}''(t_{K})^{T} R_{c}(t_{K}) & \end{pmatrix}$$


KAUST

CR54

Problem to solve $\operatorname{argmin}_{S} \{ \|A_{c} - sA_{s}\| \}$


Recovering the scale factor (2/2)


- LS, gradient descent (et similia) poorly conditioned
 - Not so many data
 - Severe outliers

- Robust fitting use RANSAC approach
 - Use MLESAC robust estimator to maximize likelihood rather than just the number of inliers
- Introduce rotation matrix R
 - Account for orientation bias

Improve RANSAC performance

Results

CR54

... Ø

Scene		Real scale	Acquisition info			Our approach		Simple scaling	
Name		m / s.u.	Seconds	Poses	Samples	m/s.u.	Error	m/s.u.	Error
3D printer		2.094	17.0	65	883	2.01	4.0%	2.85	36.1%
Scanner setup	87	3.565	9.8	53	641	3.45	3.1%	3.12	12.4%
Desktop	1.5	6.520	11.3	48	596	6.24	4.2%	5.16	20.8%
Statuettes		2.602	11.5	53	607	2.49	4.5%	2.48	4.9%
Office desk		1.977	30.4	88	471	2.01	1.8%	2.01	1.8%
Office workstation		3.95	12.3	37	1307	3.94	0.3%	3.98	0.6%
Ara pacis		1.568	30.07	77	1569	1.52	2.8%	1.80	13.0%
Workstation (Fastest)		0.707	9.9	34	1305	0.73	2.7%	0.89	20.4%
Desk fast motion		6.918	14.8	74	1718	6.28	9.1%	3.88	44.0%

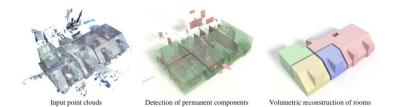
Median error 4% (wrt 10-15% of other STAR solutions)

Example 2

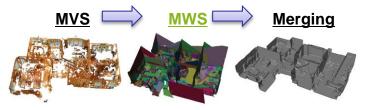
DATA FUSION AND COMMUNICATION FOR INDOOR CAPTURE

Indoor capture + presentation

- Creation and sharing of indoor digital mock-ups
 - Exploiting the capabilities of modern mobile devices

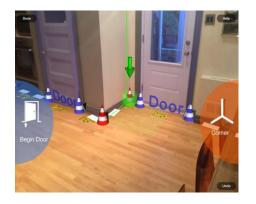


- Much interest/applications (security, location awareness, ...)
 - Need to capture visual information together with room structure


Typical solutions

Indoor capture and modeling

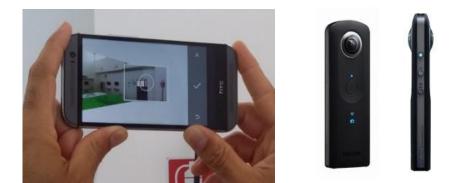
- Manual modeling
- Semi-automatic methods based on high-density data
 - Laser scanning
 - Professional but expensive, limited to specific applications
 - Multi-view stereo from photographs
 - Generally cost effective but hard to apply in the indoor environment
 - » Walls poorly textured, occlusions, clutter
 - » Furthermore: need for heavy MW constraints, computationally demanding


Furukawa et al. Reconstructing Building Interiors from Images. ICCV 2009

Examples using low-cost mobile devices

Interactive capture and mapping of indoor environment

- MagicPlan http://www.sensopia.com
 - Floor corners marked via an augmented reality interface
 - Manual editing of the room and floor plan merging using the screen interface
- Sankar and Seitz: Capturing indoor scenes with smartphones (UIST2012)
 - Corners marked on the screen during video playback

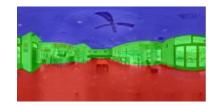


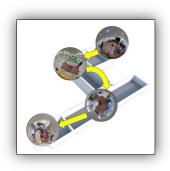
Exploiting panoramic images

- 360 degrees images are easy to capture using common devices
 - Interactive apps using IMU + GUI + automatic stitching
 - Dedicated cameras
- 360 degrees images are easy to navigate
 - Spheremaps + emerging formats video+image formats
 - VR devices for immersion

 What about analyzing them?

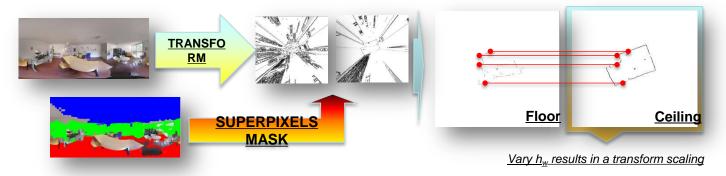
CRS





Finding the room structure

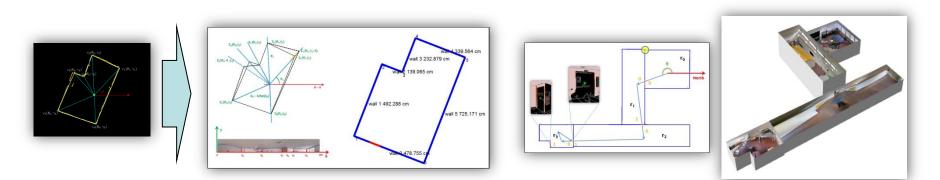
- Take one spheremap per room
 - Equirectangular images generated by a mobile device
 - Vertical lines aligned with the gravity vector
 - Image approx. oriented towards magnetic North
 - Eventually use IMU + Visual features for stitching
- Track user motion to identify connections between rooms
 - Use IMU + Visual Features for tracking
- Solve local + global optimization to find indoor structure
 - Multi-room environment



Finding the room structure

Analyze spheremap to extract single room structure

- Room model considers vertical walls
- Extract edges and filter out regions likely far from top/bottom edges of walls
- Find wall height
 - Voting scheme used to extract most likely wall height by maximizing pairs of matching wall-floor / wall-height edge pixels
- Fit 2.5D room model to recovered wall edge map


Uses specialized transform to speed-up computation

Finding the rooms structure

Iterated to map the entire floor-plan

- Mobile tracking of user's direction moving between adjacent rooms creates a connected room graph
- Doors position identification in the image by computer vision
- Doors matching according with graph
- Rooms displacement
- Global optimization of combined model

Pintore et al. Omnidirectional image capture on mobile devices for fast automatic generation of 2.5D indoor maps. IEEE WACV 2016

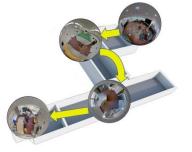
Results

CRS

Scene	Features		Area error		Wall length error		Wall height error		Corner angle error		Editing time
Name	Area $[m^2]$	Np	MP	Ours	MP	Ours	MP	Ours	MP	Ours	MagicPlan
Office H1	720	10	2.95%	1.78%	35 cm	15 cm	2.0 cm	1.2 cm	0.8 deg	0.8 deg	26m32s
Building B2	875	25	2.50%	1.54%	30 cm	7 cm	6.0 cm	1.5 cm	1.5 deg	1.5 deg	42m18s
Commercial	220	6	2.30%	1.82%	25 cm	8 cm	12.0 cm	2.7 cm	1.5 deg	1.0 deg	28m05s
Palace	183	3	16.86%	0.20%	94 cm	5 cm	45.0 cm	1.3 cm	1.8 deg	0.5 deg	15m08s
House 1	55	5	21.48%	2.10%	120 cm	16 cm	15.0 cm	4.7 cm	13.7 deg	1.2 deg	25m48s
House 2	64	7	28.05%	1.67%	85 cm	8 cm	18.0 cm	3.5 cm	15.0 deg	0.5 deg	32m25s
House 3	170	8	25.10%	2.06%	115 cm	15 cm	20.0 cm	4.0 cm	18.0 deg	1.5 deg	29m12s

Pintore et al. Omnidirectional image capture on mobile devices for fast automatic generation of 2.5D indoor maps. IEEE WACV 2016

Reasonable, fast reconstruction with rough structure and visual features

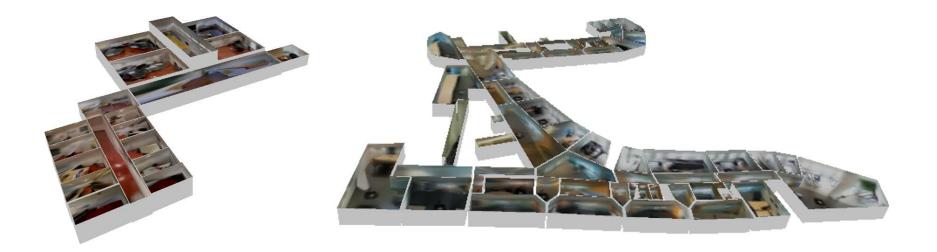

Sharing the indoor model

Indoor model

- Exploration graph
 - Each node is a spheremap/room
 - edges (yellow) are transitions between adjacent rooms
 - Stored on a server (standard http Apache2)
- Panoramic images
 - Mapped according with the graph

Interactive exploration

- Room
 - WebGL fragment shader
 - dragging to change view orientation and pinching to zoom in/out
- Passages
 - Real-time rendering of the transitions between rooms
 - Exploiting geometric model stored on the server
 - Performance improvement compared to use precomputed videos
 - Suggested paths



Some results

Live demo: <u>http://vcg.isti.cnr.it/vasco/</u> Click on the dataset on the left column to start

3D reconstruction of a 655 mq office with 19 rooms. This environment was acquired with a mobile phone (HTC One M8)

Reconstruction of a 70 rooms floor of the NHV ministry at Den Haag, Netherlands. The whole model was acquired with a Ricoh Theta S camera

Wrap-up: mobile apps characterized by the exploitation of mobile device features

Features

- 1. Mobility
- 2. Camera
- 3. Active light
- 4. Non-visual sensors
- 5. Processing power

- 6. Connectivity
- 7. Display

After the break: rendering!

