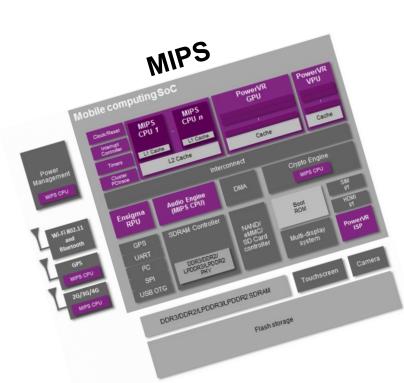
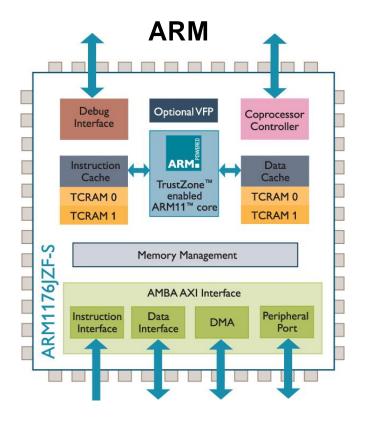


Part 2.1


Mobile Graphics Trends: Hardware Architectures

Pere-Pau Vázquez, UPC



Architectures (2014 – beginning 2015)

UPC

Architectures

x86 (CISC 32/64bit)

- Intel Atom Z3740/Z3770, X3/X5/X7
- AMD Amur / Styx (announced)
- Present in few smartphones, more common in tablets
- Less efficient

• ARM

- RISC 32/64bit
 - With SIMD add-ons
- Most common chip for smartphones
- More efficient & smaller area
- MIPS

CR5

- RISC 32/64bit
- Including some SIMD instructions
- Acquired by Imagination, Inc. @2014

Architectures – RISC vs. CISC but...

CISC (Complex Instruction Set Computer)

- Fast program execution (optimized complex paths)
- Complex instructions (i.e. memory-to-memory instructions)

RISC (Reduced Instruction Set Computer)

- Fast instructions (fixed cycles per instruction)
- Simple instructions (fixed/reduced cost per instruction)

FISC (Fast Instruction Set Computer)

- Current RISC processors integrate many improvements from CISC: superscalar, branch prediction, SIMD, out-of-order
- Philosophy \rightarrow fixed/reduced cycle count/instr
- Discussion (Post-RISC):
 - http://archive.arstechnica.com/cpu/4q99/risc-cisc/rvc-5.html

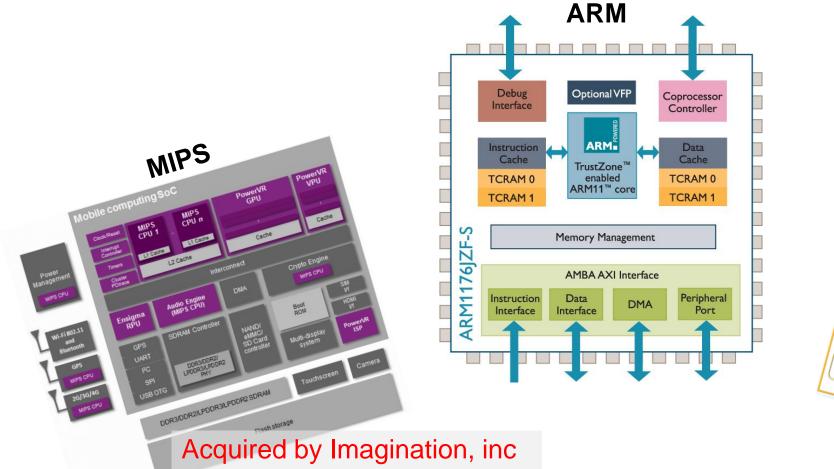
Landscape has changed a bit...

• Status by 2014-2015:

- Intel Atom X3/X5/X7 announced (March 2015)
- -AMD announces Amur / Styx (20nm, Oct. 2014)
- -Nvidia launches Tegra X1 (March 2015)
- -ARM the only EU big technology company
- Imagination announces Furian (sub 14nm, March 2017) Imagination's chips are in iPhones & iPads

• Nowadays:

- -Intel quits mobile Apr/May 2016
- -AMD cancels 20nm chips (Jul. 2015)
- -Nvidia cancels Shield tablet (Aug. 2016)
- -ARM acquired by Softbank (Sep. 2016)
- Apple tells Imagination that their IP will not be needed in 18-24 months (Apr. 2017)
 - Imagination sold to chinese-backed fund Canyon Bridge (Nov. 2017)
- Broadcom has offered to pay \$103 billion for Qualcomm
 - Declined
 - Broadcom is considering improving the offer (22th November)



Architectures (nowadays)

KAUST

CR54

A B

Architectures – ARM

- ARM Ltd.
 - RISC processor (32/64 bit)
 - IP (intellectual property) Instruction Set / ref. implementation
 - CPU / GPU (Mali)

Licenses (instruction set OR ref. design)

- Instruction Set license -> custom made design (SnapDragon, Samsung in Galaxys, Apple in iPones & iPads)
 - Optimizations (particular paths, improved core freq. control,...)
- Reference design (Cortex A9, Cortex A15, Cortex A53/A57...)

Licensees (instruction set OR ref. design)

- Apple, Qualcomm, Samsung, Nvidia, AMD, MediaTek, Amazon (through Annapurna Labs, Inc.)...
- Few IS licenses, mostly adopting reference design

Manufacturers

- Contracted by Licensees
 - GlobalFoundries, United Microelectronics, TSM...

Architectures – ARM...

- Supported on
 - Android, iOS, Win Phone, Tizen, Firefox OS, BlackBerry, Ubuntu Phone, ...
- Biggest mobile market share
- Typically paired with mobile GPUs. Existing brands:
 - Adreno 4x0/5x0 Qualcomm
 - PowerVR 8XE (Rogue) Imagination

- Mali T8x0/G51/G71 ARM
- General strategies:
 - Cache coherence week sequential code guarantees on multithreading!!
 - Heavy dependence on compiler \rightarrow optimize instruction scheduling
 - Operation dependencies , loop unrolling, etc...
 - Use SIMD extensions

CR54

Architecture types

- High performance
 - Premium smartphones & tablets
- High area efficiency
 - Medium-to-low smartphones
- Ultra-low power
 - Smartwatches

Architectures

Mobile GPU architecture trends

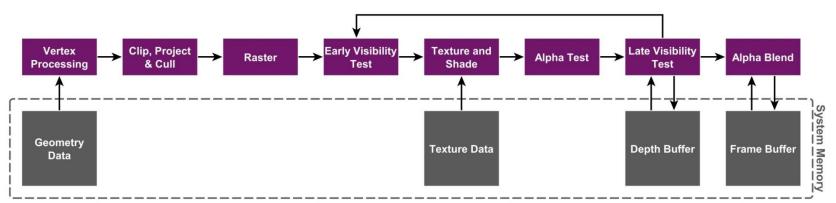
Graphics pipeline trends

- Tiled rendering
- Data (texture) compression
- Other optimizations

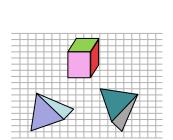
Tiled Rendering

- Immediate Mode Rendering (IMR)
- Tile-Based Rendering (TBR)
- Tile-Based Deferred Rendering (TBDR)

VS



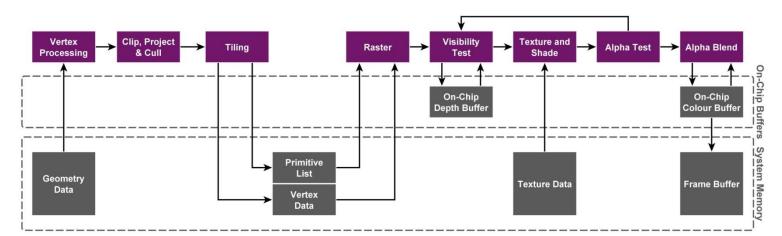
Architectures – GPU


Inmediate Mode Rendering (IMR)

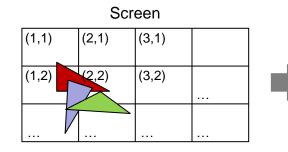
- Geometry is processed in submission order
 - High overdraw (shaded pixels can be overwritten)
- Buffers are kept in System Memory
 - High bandwidth / power / latency

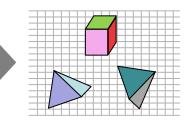
- Early-Z helps depending on geometry sorting
 - Depth buffer value closer than fragment \rightarrow discard

http://blog.imgtec.com/powervr/understanding-powervr-series5xt-powervr-tbdr-and-architecture-efficiency-part-4



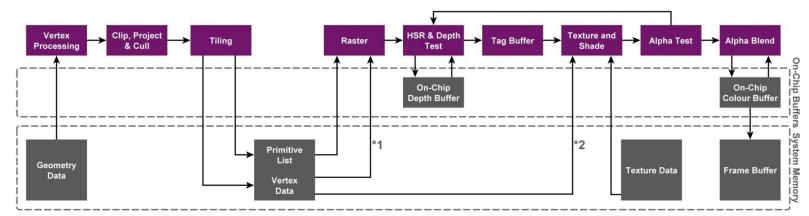
FS

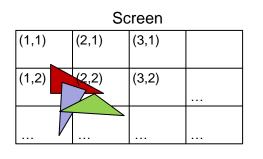


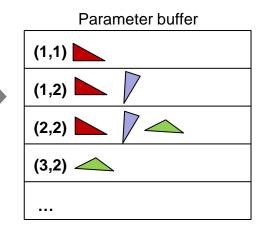

Architectures – GPU

- Tile Based Rendering (TBR)
 - Rasterizing per-tile (triangles in bins per tile) 16x16, 32x32
 - Buffers are kept on-chip memory (GPU) fast! → geometry limit?
 - Triangles processed in submission order (TB-IMR)
 - Overdraw (front-to-back -> early z cull)
 - Early-Z helps depending on geometry sorting

http://blog.imgtec.com/powervr/understanding-powervr-series5xt-powervr-tbdr-and-architecture-efficiency-part-4






Architectures – GPU

- Tile Based Deferred Rendering (TBDR)
 - Fragment processing (tex + shade) ~waits for Hidden Surface Removal
 - Micro Depth Buffer depth test before fragment submission
 - whole tile → 1 frag/pixel ☺ → Limit: ~100Ktri + complex shader
 - iPAD 2X slower than Desktop GeForce at HSR (FastMobileShaders_siggraph2011)
 - Possible to prefetch textures before shading/texturing
 - Hard to profile!!! ~~~Timing?

http://blog.imgtec.com/powervr/understanding-powervr-series5xt-powervr-tbdr-and-architecture-efficiency-part-4

Data/texture compression

- ARM's Adaptive Scalable Texture Compression (ASTC) supported by most mobile GPU vendors
- ETC2/EAC standard compression OpenGL ES 3.0
- Compression hardware also present in display hardware
 - Rendered images stored and transferred to the display in a compressed
 - Saving bandwidth

Other optimizations

- Deferred shading
- Primitive elimination
- Skipping updates to pixels that do not change
 - ARM memory transaction elimination

Trends

- Specific hardware for ray tracing
- Deep learning libraries & hardware (e.g. Qualcomm's Fast CV, Nvidia's CUDA Deep Neural Network)
- Skipping updates to pixels that do not change
 - ARM memory transaction elimination

